Subgroup conjugacy problem for Garside subgroups of Garside groups
نویسندگان
چکیده
We solve the subgroup conjugacy problem for parabolic subgroups and Garside subgroups of a Garside group, and we present deterministic algorithms. This solution may be improved by using minimal simple elements. For standard parabolic subgroups of Garside groups we provide e ective algorithms for computing minimal simple elements.
منابع مشابه
A New Approach to the Conjugacy Problem in Garside Groups
The cycling operation endows the super summit set Sx of any element x of a Garside group G with the structure of a directed graph Γx. We establish that the subset Ux of Sx consisting of the circuits of Γx can be used instead of Sx for deciding conjugacy to x in G, yielding a faster and more practical solution to the conjugacy problem for Garside groups. Moreover, we present a probabilistic appr...
متن کاملParabolic subgroups of Garside groups
A Garside monoid is a cancellative monoid with a finite lattice generating set; a Garside group is the group of fractions of a Garside monoid. The family of Garside groups contains the Artin-Tits groups of spherical type. We generalise the well-known notion of a parabolic subgroup of an Artin-Tits group into that of a parabolic subgroup of a Garside group. We also define the more general notion...
متن کاملGrowth of Minimal Word-length in Garside Groups
The Garside group, as a generalization of braid groups and Artin groups of finite types, is defined as the group of fractions of a Garside monoid. We show that the semidirect product of Garside monoids is a Garside monoid. We use the semidirect product Z ⋉ G of the infinite cyclic group Z and the cartesian product G of a Garside group G to study the properties of roots and powers of elements in...
متن کاملStable Super Summit Sets in Garside Groups
The known algorithms for solving the conjugacy problem in Garside groups involve computing a particular subset of the conjugacy class, the so-called super summit set. The super summit set [g] of an element g in a Garside group is, intuitively, the set of all conjugates of g that have the shortest normal form in the conjugacy class of g. In this paper, we define the stable super summit set [g] o...
متن کاملAbelian Subgroups of Garside Groups Eon-kyung Lee and Sang
In this paper, we show that for every abelian subgroup H of a Garside group, some conjugate gHg consists of ultra summit elements and the centralizer of H is a finite index subgroup of the normalizer of H. Combining with the results on translation numbers in Garside groups, we obtain an easy proof of the algebraic flat torus theorem for Garside groups and solve several algorithmic problems conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Groups Complexity Cryptology
دوره 2 شماره
صفحات -
تاریخ انتشار 2010